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 
Abstract—This paper formulates a generic DC approximation 

of the full active-reactive AC power flow problem. This novel 
approximation includes a novel linear reactive DC model than can 
be used to estimate bus voltage magnitudes and MVAr flows 
(DC-Q model). In addition, the combination of the DC-P and 
DC-Q models also provides a better estimation of network power 
losses, improving the accuracy of the well-known DC-P model. 
This novel DC-Q model is based on a change of variables, where 
the bus voltage module is substituted by its natural logarithm, and 
presents the same advantages recognized in the DC-P model. Due 
to this fact, it can be easily integrated into any software application 
that is already using the DC-P model. Using a small size 2-bus 
system and actual real-time scenarios of the Spanish electric power 
system, the precision performance of the DC-Q model is assessed, 
and the accuracy of the DC-P and DC-Q models are also 
compared. 
 

Index Terms—DC power flow, contingency analysis, voltage 
security assessment. 

I. INTRODUCTION 

The power flow (PF) of an electric power system is the basic 
computation tool of different security and market applications 
such as on-line and off-line security-constrained operation, 
optimal power flows, medium term and long-term unit 
commitment models, contingency screening and ranking, 
security-constrained market clearing tools, etc.  

PF equations include both active and reactive balances in 
each bus of the power system. They are non-linear expressions 
formulated with modules and angles of bus voltages as 
variables. Under normal operation conditions, the behavior of 
AC electric power systems tends to be smooth, even linear for 
small disturbances. Nevertheless, if the system is highly loaded 
of some severe outage has occurred, then the behavior 
deteriorates to highly non-linear, or even unsolvable if the point 
of work is beyond the voltages collapse point. Voltages collapse 
point is a saddle-node bifurcation of the PF equations, thus is 
the boundary between solvable and unsolvable PF [1, 2]. 

Because of the non-linearity of PF equations, all the methods 
presented in the literature through decades are formulated as 
iterative processes [3]. Since the very first attempts during the 
50s, researches have applied different algorithms (Jacobi, 
Gauss-Seidel, Newton-Raphson, etc.), formulations (adopting 
either polar or cartesian coordinates, using either admittance or 
impedance matrix, etc.) and strategies (P and QV decoupling, 
invariant approximations for the Jacobian matrix, step control, 
etc.) to not only solve the PF problem, but also identify 

                                                           
 

unsolvable scenarios. Moreover, classic algorithms tend to fail 
when the system is so close to the voltages collapse point [4]. 
As a consequence, special methods have been designed to be 
robust in case of ill-conditioned systems, such as step size 
optimization [5], continuation power flow and optimization 
techniques [6, 7], or even the more recently Holomorphic 
Embedding Load-flow Method (HELM) formulation [8]. 

One additional difficulty associated to power flow solution 
is the computation speed. For several applications such as 
security analysis or planning issues the problem is to compute 
the solution for large sets of power system scenarios as fast as 
possible. Taking a set of sensible simplifications on the active 
power equations of the PF, the active DC linear power flow 
model is built to obtain approximate values of the bus voltage 
angles and active power flows through lines and transformers. 
This well-known model will be referred as DC-P along the 
paper. Among the main features that make DC-P power flows 
very attractive are [9]: linearity, uniqueness of solution, 
simplicity of methods and software, minimization of required 
input data, suitability to security-constrained and economic 
tools such as optimal power flows and contingency analysis. 
Even though recent research has pointed that a DC-P model 
may not be very accurate under certain conditions [9-13], it is a 
widespread used model where the values of angles and MW line 
flows are accepted as reasonable by the industrial and research 
community for a large set of software applications and studies. 

DC-P models have been classified into two different types: 
(a) hot-start or state-dependent models and (b) cold-start or 
independent-state models. The former is constructed on a 
known solution of the power flow that serves as base case and 
has better precision, where the latter is built when no reliable 
previous solution is available and thus is less accurate. Among 
the cold-start models two different subtypes are described in the 
literature (b1) classical DC-P model (ignoring line active power 
losses) and (b2) DC-P power flow model with loss 
compensation which includes the estimated value of active 
power losses distributed along the power system. In order to 
obtain an estimated value of system losses, an initial run of the 
classical DC-P model is needed. Precision and comparison 
among these DC-P models is tackled within the literature [9, 10, 
14]. 

A DC-P model gives no information about bus voltage 
magnitudes and reactive flows of branches. In order to assess 
voltage and reactive magnitudes, full AC models are used. 
Integrating in different ways the DC-P model solution within 
the AC power flow is an option to improve the full AC model 
performance [12, 14, 15]. For specific applications such as 
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voltage-related contingency assessment, different techniques 
such as the 1P-1Q iteration and zone related methods can be 
employed for ranking and screening [16-18]. 

Even though recent attempts considering reactive power 
within a DC-P power flow model can be found [13], no linear 
power flow DC model as such can be found in the literature for 
reactive problems. This paper formulates a generic full active-
reactive DC linear power flow model and derives from this 
formulation a novel linear DC-Q model than can be used to 
make estimates of bus voltage magnitudes and MVAr flows. 
The novel DC-Q model here proposed has the same advantages 
listed for DC-P models. In this sense, the DC-Q model can be 
easily integrated in software applications for different purposes. 
As will be seen in the following sections, the key to formulate 
the full active-reactive power DC-model of an electric power 
system is to use the logarithm of the bus voltage as variable. 

Similarly to the cold-start DC-P models (it is assumed that 
no previous reliable solution of the power system is available), 
both a DC-Q classical model ignoring reactive power losses, 
and a DC-Q model with reactive loss compensation will be 
formulated in order to improve the accuracy. Using a small size 
2-bus system and actual real-time scenarios of the Spanish 
electric power system, the precision performance of the DC-Q 
model is assessed, and the accuracy of the DC-P and DC-Q 
models are also compared. 

The paper is organized as follows. Section II. presents the 
DC modeling of the network using the log-voltage notation and 
certain network simplifications. Section III. explains how to 
solve the DC models. Results presented in section V. illustrate 
the performance of the DC-Q model. Finally, conclusions of the 
paper are presented in section VI.  

II. DC MODELING OF THE NETWORK 

The present section details how to formulate the 
approximated DC model of an electric power system 
considering not just the active power problem, but also the 
reactive power problem. To formulate the DC-Q model, bus 
voltages are substituted by their logarithms. 

The devices considered to be modeled in the network are 
power lines, power transformers and shunt devices (reactors 
and capacitors). The bus active and reactive power balance 
equations are formulated using the admittance matrix and 
considering bus voltage angles and modules as state variables. 
After the equations are obtained and linearized, they are 
rearranged thus independent terms are summed at the 
right-hand-side, and terms with voltage angles or log-modules 
are placed as a linear application in the left-hand-side. 

Since the system is linearized, power losses are not 
considered in first attempt. After solving the DC models, both 
active and reactive power losses can be estimated. Using power 
losses estimation, they can be introduced in the network as new 
independent energy sources. Therefore a second DC models 
solving is needed to consider network power losses and obtain 
a more accurate approximation to the actual solution. 

A.  Notation 

Vi Bus i voltage 
|Vi| Module of the bus i voltage 
i Log-module of the bus i voltage (i = ln(|Vi|)) 

i Angle of the bus i voltage 
PDi Active power generation absorbed from bus i 
QDi Reactive power generation absorbed from bus i 
PGi Active power generation injected into bus i 
QGi Reactive power generation injected into bus i 
Ii>j Branch complex current leaving bus i to bus j 
Si>j Branch complex power flow leaving bus i to bus j 
Pi>j Branch active power flow leaving bus i to bus j 
Qi>j Branch reactive power flow leaving bus i to bus j 
Si>0 Shunt complex power flow leaving bus i to ground 
Pi>0 Shunt active power flow leaving bus i to ground 
Qi>0 Shunt reactive power flow leaving bus i to ground 
I Series current of branch connecting buses i and j 
Plossij Fraction associated to bus i of the branch ij active 

power losses estimation 
Qlossij Fraction associated to bus i of the branch ij reactive 

power losses estimation 
rij Series resistance of a branch connecting buses i and j 
xij Series reactance of a branch connecting buses i and j 
bij Shunt susceptance of a line connecting buses i and j 
tij Tap placed at bus i of a transformer connecting buses 

i and j 
|tij| Module of the transformer tap placed at bus i of a 

transformer connecting buses i and j 
ij Log-module of the transformer tap placed at bus i of a 

transformer connecting buses i and j (i = ln(|tij|)) 
ij Angle of the transformer tap placed at bus i of a 

transformer connecting buses i and j 
bi Susceptance of a shunt device connecting bus i to 

ground 
Qlossi0 Reactive power losses estimation for the shunt device 

connecting bus i to ground 

B.  Log-V notation for the DC-Q model formulation 

One key aspect why the DC model has been applied to the 
active power problem and not for the reactive power problem is 
because angles and modules of the bus voltages present 
different behavior. The modules of bus voltages appear directly 
multiplying the equations, whereas the angles appear multiplied 
by the imaginary unit as the exponent of e. To overcome this 
difficulty, the idea of considering as variables the logarithm of 
the bus voltages instead of the module is proposed. 

  lni i ij j
i i i iV V e e V        (1) 

In (1), the bus i voltage phasor is represented in both the 
classic module-angle notation and using the proposed 
log-voltage notation. In the latter, bus i voltage Vi is defined as 
the exponentiation of a complex number whose real part is the 
log-voltage i and the imaginary part is the angle i. 

The log-voltage i represents a novel contribution for AC 
circuit analysis, but it actually has always been there, masked 
inside the classic power flow solving process. To construct the 
Jacobian matrix of power flow equations, their derivatives with 
respect to system variables are needed. Concerning the 
derivatives with respect to the voltages modules, it is very 
common to multiply the derivative by the voltage module, i.e. 
|Vi|·∂(·)/∂|Vi|), and define the updating vector as a relative 
updating (|Vi|/|Vi|). All these manipulations lead to the same 
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results obtained by considering the log-voltage i as variable 
instead of the module |Vi|. On one hand, following the chain rule 
it can be observed that the derivatives are the same. 

 
     i

i i
i i i i

V V
V V


 

  
    
   
  

 (2) 

On the other hand, the relative updating of the module |Vi| is 
equivalent to the log-voltage i updating. 

 i i
i i i i iV e V e V          (3) 

But this change of variable not only can be applied to the bus 
voltages modules. Other network variables that can be 
redefined using log notation are the power transformer taps. 
Tap tij is considered as a complex number since taps may 
control either bus voltages with its module |tij| or active power 
flows with its angle ij. Therefore, also tij can be formulated 
using exponential notation: 

 ij ij ijj j

ij ijt t e e     (4) 

Using the log-module ij instead of |tij| provides simpler 
derivatives for the Jacobian matrix, and also allows to consider 
transformer taps as control variables in the DC-Q model, in the 
same way that angles ij appear in the DC-P model. 

C.  Generators, loads and equations system definition 

In both the DC-P and the DC-Q models there are two kinds 
of buses: reference buses and variable buses. The former 
present their voltages set to a fixed value and their net current 
injection free, thus they have to be computed after solving the 
DC model. The latter are the opposite, i.e. they present specified 
net current injections and their voltages are the variables of the 
system to be solved. 

There exist a lot of control strategies in the literature to 
control the power systems which manipulate the references and 
the variables to achieve different objectives, such as setting 
energy interchange between areas, or controlling the voltage of 
a HV bus using a generation unit, a shunt device or transformer 
taps. The formulation of both the DC-P and the DC-Q can be 
adapted to work considering different equations and variables 
rearrangements, and also can be both integrated into more 
complex tools where the classic DC-P model is already 
integrated. Nevertheless, in this paper the reference and 
variable buses definition used is the classic version of the power 
flow problem. As a consequence, the power demand will be 
always specified, but the power generated will depend on the 
kind of bus, and on the considered DC network. Fig. 1 shows 
the load and the generator models used in the DC networks. 

 
Fig. 1.  DC modeling for loads and generation units 

In the left-hand-side of Fig. 1, loads are modeled as current 
sources, absorbing the corresponding demand from the 
network. That model is valid for both the DC-P and the DC-Q 
models. However, the generator model (right-hand-side of Fig. 
1) depends on what kind of is bus i. If it is a variable bus, then 

the model is a current source injecting the power production 
into the network, thus the voltage of the bus will be a variable 
of the system. If the bus is a reference bus, then the model is a 
voltage source setting the voltage of the bus, thus the power 
production will be unknown until the circuit is solved. 

The sets of reference buses and variable buses for the DC-P 
and the DC-Q networks are different to each other. Concerning 
the DC-P model, one and only one reference bus is considered, 
also known as slack bus. For the DC-Q model, every bus with 
at least one operative generation unit is considered as a 
reference bus. 

D.  DC networks modeling 

The devices considered to be modeled in the network are 
power lines, power transformers and shunt devices (reactors 
and capacitors). Those are the most relevant and numerous 
devices in actual distribution and transmission networks. Other 
electric power devices, such as FACTS or HVDC links, have 
been discarded, although their integration in the DC models 
proposed in this paper is feasible. 

    1)  Power line 

Network power lines have been represented using a 
-scheme, with a series impedance rij +jxij from bus to bus, and 
half of the shunt susceptance bij at each bus. For the DC 
modeling of power lines, the series resistance rij is neglected, 
thus only series reactance xij and shunt susceptance bij are 
considered. Using this model, the current leaving bus i to 
bus j is: 

    1·
2 2

i j ij ij
i j i i i j

ij ij

V V jb b
I V j V V V

jx x
             

 (5) 

Considering exponential notation (1) for bus voltages, the 
power injected in the line from bus i, computed as Si>j=Vi·(Ii>j)*, 
results to be: 

 

   

 2 2

1·
2

1·
2

j ji i i i i i

i i j ji i

ij jj j j
i j

ij

ij j j

ij

b
S e j e e e

x

b
j e e e

x

      

    

  


  

          
        

 (6) 

Considering that ez~1+z when z tends to zero, (6) is 
expanded and simplified, thus the active and reactive power 
injected in the line from bus i are approximated as follows: 

 (1 2 )
2

i j i j ij
i j i j i

ij ij

b
P jQ j

x x
     
          

   
  (7) 

Equation (7) is analog for power flow injected in the line 
from bus j. From (7) it can be observed that the DC-P model 
represented as the active power flow is proportional to bus 
angle  difference and inverse proportional to the series 
reactance. In the case of the DC-Q model, the reactive power 
flow is also proportional to bus log-module  difference and 
inverse proportional to the series reactance, plus an extra term 
to represent reactive power flow through shunt susceptance. A 
complete representation of the line and their DC-P and DC-Q 
models is depicted in Fig. 2. 
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Fig. 2.  Power line electric model, and corresponding DC-P and DC-Q models 

Fig. 2 representation of the DC-P model includes xij as a 
resistance between the buses, and additional current sources 
representing the active power losses of the line. Representation 
of the DC-Q model includes xij as a series resistance and 
additional current sources for the reactive power losses as well, 
but bij is also represented as a negative conductance and a 
current source at each of both buses. 

Concerning active power losses, current sources Plossij and 
Plossji are placed at corresponding bus in the DC-P circuit. Each 
source will absorb half of the active power losses in the series 
resistance rij of the line due to the series current I. 

 
21 ·

2ij ji ijPloss Ploss r I   (8) 

Series current I is the series current from bus to bus, i.e. the 
current due to the voltages drop applied to the series impedance 
of the line. The module of that series current is computes as 
follows: 

 
2 2

2 i j i j

ij ij
I

x x
           
   

 (9) 

In the case of reactive power losses, current sources Qlossij 
and Qlossji are placed at corresponding bus in the DC-Q circuit. 
Each source will absorb half of the reactive power losses in the 
series reactance xij of the line due to the series current I, but also 
will inject the reactive power excess from the shunt susceptance 
bij. At bus i (analog for bus j), the reactive power absorbed by 
the shunt susceptance halved is approximated as follows: 

  2 2 21· ·
2 2 2

i
ij ij

i ij i ij i
b b

V e b b           (10) 

In (10), the first two terms of the Taylor approximation are 
computed in the DC-Q circuit, whereas the third term is 
considered as the reactive power excess. As a consequence, 
current sources Qlossij and Qlossji are set as follows: 

 
2 21 · ·

2ij ij ij iQloss x I b    (11) 

 
2 21 · ·

2ji ij ij jQloss x I b    (12) 

    2)  Power transformer 

Network power transformers have been represented using a 
series impedance rij +jxij from bus to bus, and taps with voltage 
and phase control at both sides of the transformer, ti and tj. For 
the DC modeling of power transformers, the series resistance rij 
is neglected, thus only series reactance xij is considered Using 
this model, the current leaving bus i to bus j will be: 

 
* * *
1 ·

· ·
i i j j ji

i j
i ij ij i i i j

V t V t Vj VI
t jx x t t t t

          
   

 (13) 

Considering exponential notation (1) for the bus voltages 
and the transformer taps, the power injected in the line from 
bus i, computed as Si>j=Vi·(Ii>j)*, results to be: 

 
 

 2 2

· ·
· ·

j ji i
i i

j ji i i i i i

i i j j i i j ji i

jj
j

i j jj j j
ij

j j j j

ij

j e eS e
x e e e e

j
e e

x

  
 

      

        




   

      

 

 
 (14) 

Considering that ez~1+z when z tends to zero, (14) is 
expanded and simplified, thus the active and reactive power 
injected in the line from bus i are approximated as follows: 

 i j i j i j i j
i j i j

ij ij
P jQ j

x x
       

 
            

   
  (15) 

Equation (15) is analog for power flow injected in the 
transformer from bus j. From (15) it can be observed that the 
DC-P model represented as the active power flow is 
proportional to bus angle  and tap angle  differences, and 
inverse proportional to the series reactance. In the case of the 
DC-Q model, the reactive power flow is proportional to bus 
log-module  and log-tap module  differences, and inverse 
proportional to the series reactance. In both models, DC-P and 
DC-Q, transformer taps are included as independent current 
sources. A complete representation of the transformer and their 
DC-P and DC-Q models is depicted in Fig. 3. 

 
Fig. 3.  Power transformer electric model, and corresponding DC-P and DC-Q 
models 

Concerning power losses, current sources are placed at 
corresponding bus in both the DC-P (Plossij and Plossji) and 
DC-Q (Qlossij and Qlossji) circuits. Each source will absorb half 
of the power losses in the series impedance rij+jxij of the line 
due to the series current I. 

 
21 ·

2ij ji ijPloss Ploss r I   (16) 

 
21 ·

2ij ji ijQloss Qloss x I   (17) 

In this case, the series current I to be considered is the 
inter-taps transformer current, i.e. the current which pass 
through the series impedance of the transformer. 

 
2 2

2 i j i j i j i j

ij ij
I

x x
                   
   

 (18) 

    3)  Shunt device 

Network shunt reactors and capacitors have been 
represented using their shunt susceptance bi. Using this model, 
the current leaving bus i to ground through the shunt is: 
 0 ·i i iI jb V   (19) 

Considering exponential notation (1) for bus voltages, the 
power injected in the shunt from bus i results: 
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  *
0 0 · ·i i i ij j

i i i iS V I e jb e    
     (20) 

Assuming that ez~1+z when z tends to zero, then the active 
and reactive power injected in the shunt from bus i is: 
    0 0 0 (1 2 )i i i iP jQ j b       (21) 

From (21) it can be observed that the DC-P model 
represented is blank since shunt devices are purely reactive. In 
the case of the DC-Q model, the reactive power flow represents 
reactive power flow through shunt susceptance as a constant 
plus a linear function of i. A complete representation of the 
line and their DC-P and DC-Q models is depicted in Fig. 4. 

 
Fig. 4.  Shunt reactor/capacitor electric model, and corresponding DC-P and 
DC-Q models 

Concerning reactive power losses, current source Qlossi is 
placed at the bus in the DC-Q circuit. That source will inject the 
reactive power excess from the shunt susceptance bi. At bus i, 
the reactive power absorbed by the shunt susceptance is 
approximated as follows: 

  2 2 21· · 2 · 2 ·
2

i
i i i i i i ib V b e b b           (22) 

In (22), the first two terms of the Taylor approximation are 
computed in the DC-Q circuit, whereas the third term is 
considered as the reactive power excess. As a consequence, 
current source Qlossi0 is set as follows: 
 2

0 2 ·i i iQloss b    (23) 

III. DC NETWORKS SOLVING 

DC approximations presented in previous section provide 
linear circuits where power flows are represented by currents 
and voltage variables are bus voltages. As a consequence, 
resolution of both the DC-P and the DC-Q models can be 
worked out by solving linear equations systems. These 
equations are bus current balance, and are formulated using the 
network admittance matrix and the different current sources. 

A.  DC-P network solving 

For the DC-P network modeling, the reference (r) buses are 
the swing bus, where the active power generation is free to 
compensate power losses, and the rest will be variable (v) buses, 
where active power generation and demand are specified thus 
active power mismatches can be formulated. Reference bus (r) 
will be also the reference for the voltages angles, therefore the 
angles of variable (v) buses will be the system variables. DC-P 
model equations will be: 
 ·   PG PD LP TP BP θ  (24) 

In the LHS of (24) are the vectors included as independent 
energy sources: PG and PD as bus active power generation and 
demand; LP as active power losses; and TP as transformer 
phase compensation. 

To build vector LP, each element i contains the sum of the 
active power losses of every device connected to the 
corresponding bus i. 

 i ijj
LP Ploss  (25) 

Vector TP contains the correction  introduced by 
transformers’ angle taps. To build vector TP, each element i 
contains the sum of the differences between transformers’ angle 
taps, divided by corresponding series reactance. 

 i j
i j

ij
TP

x
    
 

  (26) 

Finally, admittance matrix BP is built considering the 
inverse of series reactances in off-diagonal (-) and diagonal (+) 
elements of the matrix: 

 1 1;ii ijj
ij ij

BP BP
x x

    (27) 

To obtain the solution for the angles of variable (v) buses, 
the next linear equations system has to be solved: 

 · ·vv v v v v v vr r    BP θ PG PD LP TP BP θ  (28) 

System (28) is obtained from system (24) removing 
equations corresponding with reference (r) buses. It is 
important to remark that, in the DC-P model, the reference bus 
angle r is always equal to zero, but for generalization purposes 
it has not been removed from the equations. 

Finally, by removing equations corresponding with variable 
(v) buses, active power generation of reference buses (r) is 
obtained: 

 · ·r r r r rv v rr r    PG PD LP TP BP θ BP θ  (29) 

B.  DC-Q network solving 

For the DC-Q network modeling, the reference (r) buses are 
those with operative generation units. The rest, the variable (v) 
buses, will be any bus with no generation unit connected. 
Reference buses (r) will have a constant voltage, thus the 
log-modules of variable (v) buses will be the system variables. 
DC-Q model equations will be: 
 ·    QG QD LQ TQ B BQ ω  (30) 

In the LHS of (30) are the vectors included as independent 
energy sources: QG and QD as bus reactive power generation 
and demand; LQ as reactive power losses, included as 
independent energy sources; TQ as transformer tap 
compensation; and B as reactive injections from the shunt 
elements and the susceptances in power lines. 

To build vector LQ, each element i contains the sum of the 
reactive power losses of every device connected to the 
corresponding bus i. 

 i ijj
LQ Qloss  (31) 

Important remark for (31): index j also includes ‘0’ (i.e. to 
ground) to take the shunt devices loss correction into account. 

Vector TQ contains the correction  introduced by 
transformers’ log-module taps. To build vector TQ, each 
element i contains the sum of the differences between 
transformers’ log-module taps, divided by corresponding series 
reactance. 

 i j
i j

ij
TQ

x
    
 

  (32) 

Vector B contains the constant terms of shunt susceptances, 
including shunt elements and the susceptances in power lines, 
modeled as current sources. To build vector B, each element i 
contains the sum of any shunt susceptance connected to the bus. 
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2
ij

i i j

b
B b   (33) 

Finally, admittance matrix BQ is built considering the 
inverse of series reactances in off-diagonal (-) and diagonal (+) 
elements of the matrix. Also, shunt susceptances from lines and 
shunt devices are placed in the diagonal elements doubled and 
with minus sign: 

 1 12 ;ii i ij ijj
ij ij

BQ b b BQ
x x

       
 

  (34) 

To obtain the solution for the log-module of variable (v) 
buses, the next linear equations system has to be solved: 

 · ·vv v v v v v v vr r     BQ ω QG QD LQ TQ B BQ ω  (35) 

System (35) is derived from system (30) removing equations 
corresponding with reference (r) buses. In the DC-Q model, the 
log-voltages of the reference buses r correspond with the 
scheduled voltages of the generation units. Therefore, r must 
remain in the equations. 

Finally, by removing equations corresponding with variable 
(v) buses, reactive power generation of reference buses (r) is 
obtained: 

 · ·r r r r r rv v rr r     QG QD LQ TQ B BQ ω BQ ω  (36) 

IV. FAST CONTINGENCY ANALYSIS USING DC NETWORKS 

The DC-P is also used to compute fast contingency analysis. 
Since the DC-P model is a linear circuit, combination of 
superposition and substitution principles allow changing the 
topology of the network without updating the corresponding 
admittance matrix. This application is also available for the 
DC-Q model. 

Using a generic notation, let S be the vector of net currents 
injected from buses into network (P or Q), and x the vector of 
bus voltages ( or ). Then both are linearly related by 
admittance matrix B. This relationship works for both the base 
case (0) and the variation due to the outage (). 
       0 0S B x S B x  (37) 

Let N be the inverse of B, then: 
 1     N B x N S  (38) 

The strategy to simulate the outage of the branch km is to 
include additional power injections Sk and Sm. To achieve no 
flux at branch km, Sk and Sm have to be equal to the 
corresponding flux after the outage, as Fig. 5 depicts. 

 
Fig. 5.  Post-contingency simulation strategy 

If only additional power injections Sk and Sm are 
considered, then the updating of any variable xi can be 
expressed as follows. 
 i ik k im mx N S N S      (39) 

Power flow through branch km after the outage Sk>m will be 
the base case power flow 0

k mS   plus the 2×2 admittance matrix 

of the branch km. multiplied by voltages xk and xm update 
vectors, and thus equal to the additional power injections Sk 

and Sm. 

 
0

0

k m k kk m

m k m mm k

S S x S

S S x S

 

 

 
   

 
Bbrn  (40) 

A submatrix of N is defined corresponding with buses k and 
m. 

 
kk km k k

km km
mk mm m m

N N x S

N N x S

 
   

 
N N  (41) 

Using (41) and (40), and defining I2 as a 2×2 identity matrix, 
the adequate magnitudes for the additional power injections Sk 
and Sm are computed. 

  
01

2
0

k k m

km
m m k

S S

S S

 




   


I Bbrn N  (42) 

From the results in (42), all the variables are updated using 
(39). The new point of work corresponds with the DC solution 
if the branch would be with the values they would have if the 
branch was indeed switched off. As a consequence, the solution 
obtained is exactly the DC approximation of the network after 
the outage, and can be used to estimate post-contingency power 
flows and bus voltages. 

V. RESULTS 

To illustrate the performance of the DC-Q model presented 
in this paper, two different studies have been carried out. First 
part of results presents a generator-to-load connection through 
a standard power line. Those results presented compare the 
behavior of the three models considered: the full AC, the DC-Q 
and the DC-Q considering power losses. The second part of 
results illustrates the performance of the DC-Q modeling when 
it’s applied to actual scenarios of large-scale networks, such as 
the Spanish electric power system. 

A.  Generator-to-load basis network 

 
Fig. 6.  Generator-to-load system 

First step to check the performance of the DC-P and DC-Q 
models combination is to consider the simplest system, i.e. a 
generation unit feeding a constant power load through a power 
line, as Fig. 6 shows. The power line connecting both buses has 
been considered as a standard 400 kV single circuit line, whose 
parameters are presented in TABLE I and disposed using a 
-scheme (see Fig. 2). The line is 300 km long, approximately 
the 5% of its wavelength . 

TABLE I 
ELECTRICAL PARAMETERS OF THE GENERATOR-TO-LOAD LINE 

R [/m] X [/m] B [S/m] Zc [] Pc [W]  [km]
0.027 0.277 4.167 258.3 619.5 5838

r [pu] x [pu] b [pu]  
0.005 0.052 2.000  

The generation unit placed in bus 1 is the slack bus of the 
system, thus its angle will be used as reference (1=0.0) and its 
active power generation will be unspecified to balance the 
active power losses of the network. Besides, the generation unit 
has its voltage module set to 1.0 pu (1=0.0), and its reactive 
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power generation unspecified to balance the reactive power 
losses of the network. The load placed in bus 2 is considered as 
a constant power demand with an invariant power factor. 

For each point of work defined by the active power demand 
and its power factor, a full AC power flow is run. The solution 
is thus compared with the approximation provided by the 
combination of DC-P and DC-Q models, both neglecting and 
considering power losses correction, namely DC0 and DC 
models, respectively. To illustrate the DC models processes, 
they are going to be exposed in detail for the generator-to-load 
example. Fig. 7 presents both of the DC circuits, the DC-P and 
the DC-Q. 

In the DC-P circuit, since bus 1 is the slack of the system, it 
is considered as reference node and its voltage 1 is set to 0.0. 
The unknown variable of the bus is the net current injected into 
the network, i.e. the active power generated by the slack unit 
PG1. Bus 2 corresponds with the load, thus the active power 
demand PD2 is set and represented by a current source, and the 
voltage 2 is considered as variable of the system. Both buses 
are connected by a resistance equal to the series reactance x12 of 
the line. In addition, the line presents current sources placed at 
both extremes, absorbing the active power losses correction 
(25). 

In the DC-Q circuit, since bus 1 has a generation unit with 
an scheduled voltage equal to 1.0 pu, it presents a voltage 1 set 
to 0.0. The unknown variable of the bus is the net current 
injected into the network, i.e. the reactive power generated by 
the generation unit QG1. Bus 2 corresponds with the load, thus 
the reactive power demand QD2 is set and represented by a 
current source, and the voltage 2 is considered as variable of 
the system. Both buses are connected by a resistance equal to 
the series reactance x12, and present shunt conductances equal 
to minus the shunt susceptance b12 of the line. In addition, the 
line presents current sources placed at both extremes, one 
injecting the half of the shunt susceptance b12 of the line and the 
other absorbing the reactive power losses correction (31). 

First step is to build the admittance matrices BP and BQ, 
following (27) and (34) respectively. The matrices obtained, 
showed in TABLE II, only differ in the diagonal elements, 
where the shunt susceptance b12 of the line appears substracted 
in the DC-Q model matrix BQ. 

TABLE II 
ADMITTANCE MATRICES FOR THE DC MODELING OF THE 

GENERATOR-TO-LOAD NETWORK 

BP =  
19.268 -19.268 

BQ =  
17.270 -19.268

-19.268 19.268 -19.268 17.270

The current balance applied to bus 2 in both the DC-P and 
the DC-Q networks provides lineal equations to compute the 
voltages 2 and 2. 

22 2 2·BP PG 
0

2 2 2PD LP TP  
0

21 1·BP 
0

 

22 2 2·BQ QG 
0

2 2 2QD LQ TQ  
0

2 21 1·B BQ  
0
 

In both equations, the voltages depend on the load and the 
losses compensation. As an example, three loads has been 
considered and solved. Those three points of work correspond 
with an active power demand equal to the characteristic load 
(see TABLE I), i.e. equal to 6.2 pu. The reactive power demand 
is defined by three power factors, the resistive one (1.00), and 
0.98 both inductive and capacitive. Results of the full AC power 
flow are displayed in TABLE III, with power magnitudes in 
MW and MVAr, voltages in kV and angles in degrees. 

TABLE III 
RESULTS OF THE FULL AC MODEL APPLIED TO THE GENERATOR-TO-LOAD 

NETWORK 
PF PD2 QD2 PG1 QG1 V2 2

0.98c 620 -125.9 640.5 -119.3 413.4 -18.86
1.00 620 0 641.5 30.6 383.0 -19.97
0.98i 620 125.9 646.1 224.4 344.2 -21.81

Once the demands at bus 2 are defined, the DC models are 
solved and a first approximation of the power flow solution is 
obtained. This first approximation (DC0) has been computed 
without considering power losses compensation. This DC0 
approach is used to estimate power losses, and a second and 
definitive approximation is computed considering power losses 
compensation (DC). Results on the DC models applied to the 
generator-to-load network are presented in TABLE IV (DC-P) 
and TABLE V (DC-Q), with angles and log-modules in radians, 
and power magnitudes in pu. 

TABLE IV 
RESULTS ON THE DC-P MODEL APPLIED TO THE GENERATOR-TO-LOAD 

NETWORK 
PF 2 (AC) PD2 2 (DC0) LP2 2 (DC)
0.98c -0.3276 6.20 -0.3218 0.108 -0.3274
1.00 -0.3471 6.20 -0.3218 0.096 -0.3268
0.98i -0.3790 6.20 -0.3218 0.093 -0.3266

TABLE V 
RESULTS ON THE DC-Q MODEL APPLIED TO THE GENERATOR-TO-LOAD 

NETWORK 
PF 2 (AC) QD2 2 (DC0) LQ2 2 (DC)
0.98c 0.0342 -1.26 0.1307 1.128 0.0654
1.00 -0.0418 0.00 0.0578 1.023 -0.0014
0.98i -0.1476 1.26 -0.0151 0.999 -0.0729

Once the solution is obtained, next step is to compute the 
active and reactive power production of generation units. More 
precisely, to compute the active power production of the slack 
bus and the reactive power production of each generation unit 
in the network. Applying current balance to bus 1 in both the 
DC-P and the DC-Q networks, it is obtained lineal equations to 
compute PG1 and QG1. Results are displayed in TABLE VI, 
with all power magnitudes in pu. 

1 1PG PD
0

1 1LP TP 
0

11 1·BP 
0

12 2·BP   

Fig. 7.  Equivalent DC networks for the generation-to-unit example 
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1 1QG QD
0

1 1LQ TQ 
0

1 11 1·B BQ  
0

12 2·BQ   

TABLE VI 
RESULTS ON THE POWER PRODUCTION FOR BOTH THE DC-P AND THE DC-Q 

MODELS APPLIED TO THE GENERATOR-TO-LOAD NETWORK 

PF 
PG1 

(AC) 
 

(DC0) (DC)
QG1 

(AC) (DC0) (DC)
0.98c 6.40 6.20 6.42 -1.20 -3.52 -1.10
1.00 6.41 6.20 6.39 0.31 -2.11 0.06
0.98i 6.46 6.20 6.39 2.24 -0.71 1.41

Results on network variables of TABLE IV (DC-P) and 
TABLE V (DC-Q) show that the DC-P network is more precise 
than the DC-Q. However, DC-Q results after power losses 
present small deviations from the AC solution. In terms of bus 
voltages, only the ‘098i’ scenario presents a deviation for  
greater than 0.05 pu. Concerning the power produced (or 
absorbed) by the generation unit (see TABLE VI), the DC-P 
network presents lower deviations from the AC solution than 
the DC-Q network, but the latter present deviations low enough 
to consider the utility of the information provided by the DC-Q 
network. 

To analyze the performance of the model proposed for 
different loads, three vectors of active power demands for bus 
2 have been defined, from zero to the voltages collapse point. 
Each vector represents one of the power factors defined, the 
resistive one (1.00), and 0.98 both inductive and capacitive. 
Since the DC-Q is proposed to compute an approximation of 
the system bus voltages, the curves depicted in Fig. 8 are the 
load bus voltage and its approximations evolution during active 
power demand growth, also known as nose curves. For each 
load power factor there is a set of three curves represented by a 
marker. For each set, the thickest curves correspond with the 
full AC power flow solutions, whereas the thinner are DC 
approximations, with (continuous line) and without (dashed 
line) considering power losses. 

 
Fig. 8.  Load bus voltage evolution during active power demand growth 

As Fig. 8 shows, the DC-Q model without considering 
power losses behaves almost linearly with the active power 
demand because the reactive power demand is proportional. 
Therefore, the deviation from the full AC solution is 
unacceptable for reasonable load levels. However, the DC-Q 
considering power losses present manifolds much more similar 
to the AC ones. The deviation grows with the demand, but still 
the precision is acceptable. Considering a deviation of 0.05 pu 
in the load bus voltage, scenarios ‘098i’, ‘1.00’ and ‘098c’ 
present lower deviations with active power demand magnitudes 
less than 5.6 pu, 6.8 pu and 8.3 pu, respectively.  

The other key variable involved in the DC-Q modeling 

proposed is the reactive power flows. An accurate 
approximation of reactive power flows through the network 
branches provides useful information to optimize the reactive 
power balance in the network, and to compute more precise 
branch power flows during security analysis. The curves 
depicted in Fig. 9 are the reactive power produced by the 
generation unit and its approximations evolution during active 
power demand growth. For each load power factor there is a set 
of three curves represented by a marker. For each set, the 
thickest curve corresponds with the full AC power flow 
solution, whereas the thinner are DC approximations, with 
(continuous line) and without (dashed line) considering power 
losses. 

 
Fig. 9.  Reactive power produced by the generation unit evolution during active 
power demand growth 

The behavior of the reactive power manifolds is qualitatively 
equal to the bus voltages. In Fig. 9, the reactive power without 
considering power losses is almost linearly with the active 
power demand because the reactive power demand is 
proportional. Considering power losses, then the reactive power 
approximations follow the actual solutions until a point close to 
voltages collapse where trajectories diverge. Considering a 
deviation threshold of 0.5 pu in the reactive power, scenarios 
‘098i’, ‘1.00’ and ‘098c’ present lower deviations with active 
power demand magnitudes of less than 5.6 pu, 7.0 pu and 
9.3 pu, respectively. 

B.  Transmission network 

To illustrate the performance of the DC-Q model proposed 
in this paper, it has been applied to actual real-time scenarios of 
the Spanish electric power system. The system includes the HV 
and part of the MV network, and includes up to 2238 buses 
connected by 2331 lines, 979 transformers an 90 shunt devices. 

First step was to select a 24 hours set of real-time 136 
scenarios and thus compare the precision of the DC-Q model 
using the same network but with different demand levels. In 
Fig. 10, hourly evolution of system demand and precision 
measurements of the voltages estimated by the DC-Q model are 
presented. 
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Fig. 10.  System demand and bus voltages deviation statistics during 24 hours 

Fig. 10 shows that both the mean and the standard deviation 
of the bus voltage DC-Q estimation error present an almost 
neutral behavior as demand varies, just a couple of 
perturbations when the demand slope is at its highest, around 
hours 8 and 22. 

To get more detailed results on DC-Q model performance, 
the peak-load scenario at 19h50m has been analyzed, not only 
in the base case, but also considering the outage of each 400 kV 
line in the network. Fig. 11 depicts the cumulative distribution 
function of the bus voltage DC-Q estimation error among 400 
and 220 kV buses in the network. 

 
Fig. 11.  Bus voltages deviation distribution functions 

In Fig. 11, the base case error is represented with thick black 
line, whereas the error of each contingency analysis is plotted 
in thin grey line. All the error distributions are quite uniforms 
and present mean values around -0.005 pu. The 90% of the 
buses present an estimation error greater than -0.018 pu and 
shorter than 0.003 pu. 

Bus voltages estimation has been proved as an important 
contribution of the DC-Q model proposed in this paper. But the 
other network magnitudes under surveillance in security 
analysis, i.e. branch power flows, can be estimated with more 
precision combining the DC-P and the DC-Q models. Fig. 12 
illustrates the cumulative distribution function of the branch 
power flow estimation error among the HV branches of the 
network, i.e. the 400 and 220 kV lines, and 132/220, 132/220 
and 220/400 kV transformers. 

 
Fig. 12.  Branch power flow distribution functions 

In Fig. 12, the base case error is represented with thick black 
line, whereas the error of each contingency analysis is plotted 
in thin grey line. There are two sets of manifolds, corresponding 
with the DC-P estimation (dotted lines) and the combined DC-P 
and DC-Q estimation (continuous line). It can be observed that 
the distributions corresponding with the DC-P and DC-Q 
combination are centered on zero and present lower standard 
deviations with respect to the estimations based only in the 
DC-P model. 

VI. CONCLUSIONS 

This paper introduces a novel DC-Q model approximation 
for the power flow equations. The model is built using the 
logarithm of bus voltage as variable of the system instead of the 
module. With this change of variable, the simplifications 
applied result in two linear circuits where active and reactive 
power flows are currents, and bus angles and log-voltages are 
node voltages. Power losses are not considered in first attempt, 
thus after solving the DC models power losses are estimated 
and used as new independent energy sources and a second DC 
models solving is needed. Linearity of both circuits also allows 
computing fast contingency analysis using substitution and 
superposition theorems. 

The DC-Q model presents a large number of possible 
applications. It provides a useful tool for each application where 
fast approximations of power flow solutions are needed and the 
QV information is relevant, such as optimal power flows, 
security analysis or voltage stability studies. The linearity of 
both models allows to easily optimizing QV control strategies, 
even including transformer taps as part of the control variables 
set. DC models can also be applied to obtain an appropriate 
starting point for power flow convergence. 

Results obtained over different actual scenarios of the 
Spanish electric power system note that the DC-Q model is an 
adequate tool to compute estimations of power flow QV 
solutions. The DC-Q model by itself provides accurate bus 
voltage estimations, but also the DC-P and DC-Q combination 
allows to obtaining branch power flow estimations more precise 
than the obtained using only the DC-P model. Finally, it is 
important to remark that the accuracy of the DC models 
estimations are as precise as the system is away from voltages 
collapse point. 
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